
Introducing	General	Recursion

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.1

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative	Commons	 Attribution-NonCommercial 3.0	Unported License.

Module	Introduction

• So	far,	we've	written	our	functions	using	the	
destructor	template	to	recur	on	the	sub-pieces	of	
the	data.		We	sometimes	call	this	structural	
recursion.

• In	this	module,	we'll	see	some	examples	of	
problems	that	don't	fit	neatly	into	this	pattern.

• We'll	introduce	a	new	family	of	strategies,	called	
general	recursion,	to	describe	these	examples.

• General	recursion	and	invariants	together	provide	
a	powerful	combination.

2

Generalization

Over	Constants

Over	Expressions

Over	Contexts

Over	Data	
Representations

Over	Method	
Implementations

Mixed	Data

Data	
Representations

Basics

Recursive	Data

Functional	Data

Objects	&	
Classes

Stateful Objects

Module	08

3

Design	
Strategies

Combine	simpler	
functions

Use	a	template

Divide	into	Cases

Call	a	more	
general	function

Communicate	
via	State

Recur	on	
subproblem

Structural	Recursion

• Our	destructor	templates	always	recurred	on	
the	sub-pieces	of	our	structure.

• We	call	this	structural recursion.
• Let's	look	at	an	example	that	doesn't	fit	into	
this	mold.

4

An	example:	decode

(define-struct diffexp (exp1 exp2))

;; A DiffExp is either
;; -- a Number
;; -- (make-diffexp DiffExp DiffExp)

5

Here	is	the	data	definition	for	diffexps.		
These	are	a	simple	representation	of	
difference	expressions,	much	like	the	
arithmetic	expressions	we	considered	
in	some	of	the	earlier	problem	sets.

Examples	of	diffexps
(make-diffexp 3 5)
(make-diffexp 2 (make-diffexp 3 5))
(make-diffexp
(make-diffexp 2 4)
(make-diffexp 3 5))

6

Writing	out	diff-exps is	tedious	at	best.

Not	very	human-friendly...

• How	about	using	more		Scheme-like	notation,		
eg:

(- 3 5)
(- 2 (- 3 5))
(- (- 2 4) (- 3 5))

7

Task:	convert	from	human-friendly	
notation	to	diffexps.

• Info	analysis:
– what's		the	input?			
– answer:	S-expressions	containing	numbers	and	
symbols

8

Data	Definitions
;; An Atom is one of
;; -- a Number
;; -- a Symbol

;; An SexpOfAtom is either
;; -- an Atom
;; -- a ListOfSexpOfAtom

;; A ListOfSexpOfAtom is either
;; -- empty
;; -- (cons SexpOfAtom ListOfSexpOfAtom)

9

Here	is	a	formal	data	
definition	for	the	
inputs	to	our	
function.

Templates
(define (sexp-fn sexp)

(cond
[(atom? sexp) (... sexp)]
[else (... (los-fn sexp))]))

(define (los-fn los)
(cond

[(empty? los) ...]
[else (... (sexp-fn (first los))

(los-fn (rest los)))]))

10

And	the	templates	
that	go	with	it.

Contract	and	Examples
decode : SexpOfAtom -> DiffExp

(- 3 5) => (make-diffexp 3 5)
(- 2 (- 3 5)) => (make-diffexp

2
(make-diffexp 3 5))

(- (- 2 4) (- 3 5))
=> (make-diffexp

(make-diffexp 2 4)
(make-diffexp 3 5))

11

Umm,	but	not	every	SexpOfAtom
corresponds	to	a	diffexp

(- 3) does not correspond to any diffexp
(+ 3 5) does not correspond to any diffexp
(- (+ 3 5) 5) does not correspond to any diffexp
((1)) does not correspond to any diffexp
((- 2 3) (- 1 0)) does not correspond to any diffexp
(- 3 5 7) does not correspond to any diffexp

12

But	here	are	some	other	inputs	that	
are	legal	inputs	according	to	our	
contract.		None	of	these	is	the	
human-friendly	representation	of	
any	diff-exp.

A	Better	Contract
;; A MaybeX is one of
;; -- false
;; -- X

;; (define (maybex-fn mx)
;; (cond
;; [(false? mx) ...]
;; [else (... mx)]))

decode
: SexpOfAtom -> MaybeDiffExp

13

To	account	for	this,	we	
change	our	contract	to	
produce	a	MaybeDiffExp
instead	of	a	DiffExp.
If	the	SexpOfAtom
doesn't	correspond	to	any	
DiffExp,	we'll	have	our	
decode	function	return	
false.

Function	Definition	(1)
;; decode : SexpOfAtom -> MaybeDiffExp

;; Algorithm: if the top level of the sexp could be the top level of some
;; diffexp, then recur, otherwise return false.
;; If either recursion fails, return false. If both recursions succeed,
;; return the diffexp.

(define (decode sexp)
(cond
[(number? sexp) sexp]
[(looks-like-diffexp? sexp)
(local
((define operand1 (decode (second sexp)))
(define operand2 (decode (third sexp))))
(if (and (succeeded? operand1)

(succeeded? operand2))
(make-diffexp operand1 operand2)
false))]

[else false]))

14

Now	we	can	write	the	function	definition.		

Function	Definition	(2)
;; looks-like-diffexp? : SexpOfAtom -> Boolean
;; WHERE: sexp is not a number.
;; RETURNS: true iff the top level of the sexp could be the top
;; level of some diffexp.
;; At the top level, a representation of a
;; diffexp must be either a number or a list of
;; exactly 3 elements, beginning with the symbol -
;; STRATEGY: combine simpler functions
(define (looks-like-diffexp? sexp)

(and
(list? sexp)
;; at this point we know that
;; sexp is a list
(= (length sexp) 3)
(equal? (first sexp) '-)))

15

In	this	function	definition,	we	add	
an	invariant	(the	WHERE clause)	
to	record	the	assumption	that	our	
input	 is	not	merely	an	
SexpOfAtom,	but	is	rather	an	
SexpOfAtom that	is	not	a	number.	 	
We	know	 this	assumption	is	true,	
because	looks-like-diffexp? is	only	
called	after	number?	fails.

Function	Definition	(3)
;; succeeded? : MaybeX -> Boolean
;; RETURNS: Is the argument an X?
;; strategy: Use the template for MaybeX
(define (succeeded? mx)
(cond
[(false? mx) false]
[else true]))

16

And	we	finish	with	the	help	
function	succeeded?	.

Something	new	happened	here

• We	recurred	on	the	subpieces,	but
– we	didn't	use	the	predicates	from	the	template
– we	didn't	recur	on	all	of	the	subpieces

• This	is	not	structural	recursion	following	the	
template.

• It's	"divide-and-conquer"
• We	call	this	general	recursion.

17

Divide-and-Conquer	
(General	Recursion)

• How	to	solve	the	problem:
– If	it's	easy,	solve	it	immediately
– If	it's	hard:
• Find	one	or	more	easier	problems	whose	solutions	will	
help	you	find	the	solution	to	the	original	problem.
• Solve	each	of	them
• Then	combine	the	solutions	to	get	the	solution	to	your	
original	problem

• Here	it	is	as	a	template:

18

Here	the	subproblems are	
easier	because	they	are	
pieces	of	 the	original	
structure.
We'll	talk	more	about	what	
"easier"	means	in	Lesson	8.2

Pattern	for	General	Recursion	(1)
;; solve : Problem -> Solution
;; purpose statement...
;; TERMINATION ARGUMENT: explain why new-problem1 and new-

problem2 are easier than the-problem.
(define (solution the-problem)

(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local

((define solution1
(solve (simpler-instance1 the-problem)))

(define solution2
(solve (simpler-instance2 the-problem))))

(combine-solutions solution1 solution2))]))

19

There	is	no	magic	recipe	for	finding	
easier	subproblems.	 	You	must	
understand	 the	structure	of	the	
problem	domain.

Instead	of	using	ellipses	("..."'s),	
we've	give	each	slot	a	name	
(displayed	 in	orange)	so	you	can	
see	the	role	it	plays.

There's	more	than	one	pattern

• The	pattern	might	take	different	shapes,	
depending	on	our	problem.	

• We	might	have	different	numbers	of	trivial	cases,	
or	different	numbers	of	subproblems.	

• Let's	write	this	down	as	a	recipe,	and	then	look	at	
some	of	the	possibilities.

20

The	General	Recursion	Recipe
Question Answer

1.	Are there	different	cases	of	your	
problem,	 each	with	a	different	kind	of	
solution?

Write	a	condwith	a clause	for each case.

2.	How	do	 the	cases	differ	 from	each	
other?

Use	the	differences	 to	formulate	a	
condition	per	case

3.	For	each	case: a. Identify	one	or	more	instances of	
your	problem	that	are	simpler	 than	
the	original.

b. Document	why	they	are	simpler
c. Extract	each	instance	and	recur	to	

solve	it.
d. Combine	 the	solutions	 of	your	easier	

instances	to	get	a	solution	 to	your	
original	problem.

21

Writing		down	your	strategy

We’ll	write	down	our	strategies	as	things	like
STRATEGY: Recur on <value>

or
STRATEGY:	Recur	on	<value>;	halt	when	 <condition>

or
STRATEGY: Recur on <values>; <describe how

answers are combined>
That’s	pretty	vague– we’ll	see	more	as	we	do	more	examples.

22

Another	General-Recursion	Pattern

23

Here's	a	version	with	two	trivial	
cases	and	one	difficult	 case,	where	
the	difficult	 case	involves	only	one	
subproblem.
Most	of	our	functions	 involving	
lists	match	this	pattern.

;; solve : Problem -> Solution
;; STRATEGY: Recur on simpler-instance ARGUMENT: explain why

new-problem1 and new-problem2 are easier than the-problem.
(define (solution the-problem)

(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local

((define solution1
(solve (simpler-instance the-problem))))

(adapt-solution solution1))]))

simpler-instance : Problem -> Problem
adapt-solution : Solution -> Solution

Yet	Another	General-Recursion	Pattern
;; solve : Problem -> Solution
;; STRATEGY: Recur on (generate-subproblems the-problem), then use adapt-

solutions
TERMINATION ARGUMENT: explain why new-problem
(define (solution the-problem)

(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local
((define new-problems

(generate-subproblems the-problem)))
(adapt-solutions
(map solve new-problems))]))

generate-subproblem : Problem -> ListOfProblem
adapt-solutions : ListOfSolution -> Solution

24

Here's	a	version	where	
the	difficult	 case	
requires	solving	a	
whole	list	of	
subproblems.	 	A	tree	
where	a	node	has	a	list	
of	sons	may	lead	to	
use	of	this	pattern.

;; solve : Problem -> Solution ARGUMENT: explain why new-
problem1 and new-problem2 are easier than the-problem.

(define (solution the-problem)
(cond

[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(adapt-solution

(solve
(simpler-instance the-problem)))]))

simpler-instance : Problem -> Problem
adapt-solution : Solution -> Solution

..or	you	could	do	it	without	the	local	
defines

25

Here's	the	single-
subproblem pattern	we	
saw	a	couple	of	 slides	
ago,	but	done	without	

the	local	defines

Yet	Another	General-Recursion	Pattern
;; solve : Problem -> Solution
TERMINATION ARGUMENT: explain why new-problem
(define (solution the-problem)

(cond
[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(adapt-solutions

(map solve
(generate-subproblems the-problem)))]))

generate-subproblem : Problem -> ListOfProblem
adapt-solutions : ListOfSolution -> Solution

26

Here's	the	list-of-subproblems pattern	done	
without	using	local	define.

What	pattern	did	we	use	for	decode?

;; decode followed the first pattern we wrote:

(define (solution the-problem)
(cond

[(trivial1? the-problem) (trivial-solution1 the-problem)]
[(trivial2? the-problem) (trivial-solution2 the-problem)]
[(difficult? the-problem)
(local

((define solution1
(solve (simpler-instance1 the-problem)))

(define solution2
(solve (simpler-instance2 the-problem))))

(combine-solutions solution1 solution2))]))

27

Writing	this	down	for	decode
;; decode : SexpOfAtom -> MaybeDiffExp

;; STRATEGY: if the top level of sexp could be the top level of
;; a diffexp, recur on 2nd and 3rd elements.

(define (decode sexp)
(cond
[(number? sexp) sexp]
[(could-be-diffexp? sexp)
(local
((define operand1 (decode (second sexp)))
(define operand2 (decode (third sexp))))
(if (and (succeeded? operand1)

(succeeded? operand2))
(make-diffexp operand1 operand2)
false))]

[else false]))

28

The	strategy	is	a	tweet-sized	
description	of	how	the	function		
works.		We’ll		see	more	about	
this	later.

Another	example:	merge-sort

• Let's	turn	to	a	different	example:		merge	sort,	
which	you	should	know	from	your	
undergraduate	data	structures	or	algorithms	
course.

• Divide	the	list	in	half,	sort	each	half,	and	then
merge	two	sorted	lists.

29

merge
;; merge : SortedList SortedList -> SortedList
;; merges its two arguments
;; strategy: recur on (rest lst1) or (rest lst2)
(define (merge lst1 lst2)
(cond
[(empty? lst1) lst2]
[(empty? lst2) lst1]
[(< (first lst1) (first lst2))
(cons (first lst1) (merge (rest lst1) lst2))]
[else
(cons (first lst2) (merge lst1 (rest lst2)))]))

30

If	the	lists	are	of	length	n,	this	function	
takes	time	proportional	 to	n.		We	say	
that	the	time	is	O(n).

merge-sort
;; merge-sort : ListOfNumber -> SortedList
(define (merge-sort lon)
(cond
[(empty? lon) lon]
[(empty? (rest lon)) lon]
[else
(local
((define evens (even-elements lon))
(define odds (odd-elements lon)))
(merge
(merge-sort evens)
(merge-sort odds)))]))

31

Now	we	can	write	merge-
sort.		merge-sort	takes	its	
input	and	divides	it	into	two	
approximately	equal-sized	
pieces.		

Depending	on	the	data	
structures	we	use,	this	can	
be	done	in	different	ways.		
We	are	using	lists,	so	the	
easiest	way	is	to	take	every	
other	element	of	the	list,	so	
the	list	(10	20	30	40	50)
would	be	split	into	(10	30	
50)	and	(20	40)	.

We	sort	each	of	the	pieces,	
and	then	merge	the	sorted	
results.

Something	new	happened	here

• Merge-sort	did	something	very	different:	it	
recurs	on	two	things,	neither	of	which	is	(rest	
lon) .

• We	recurred	on	
– (even-elements lon)
– (odd-elements lon)

• Neither	of	these	is	a	sublist of	lon
– So	this	is	definitely	general	recursion,	not	
structural	recursion.

32

Running	time	for	merge	sort
• Splitting	the	list	in	this	way	takes	time	proportional	to	
the	length	n	of	the	list.		The	call	to	merge	likewise	takes	
time	proportional	to	n.		We	say	this	time	is	O(n).

• If	T(n)	 is	the	time	to	sort	a	list	of	length	n,	then	T(n)	 is	
equal	to	the	time	2*T(n/2)	that	it	takes	to	sort	the	two	
sublists,	plus	the	time	O(n)	of	splitting	the	list	and	
merging	the	two	results:

• So	the	overall	time	is
T(n)	=	2*T(n/2)	+	O(n)

• When	you	take	algorithms,	you	will	learn	that	all	this	
implies	that	T(n)	=	O(n	log	n).		This	is	better	than	an	
insertion	sort,	which	takes	O(n^2).	

33

Lesson	Summary

• We've	seen	three	examples	of	functions	that	
do	not	fit	the	structural	recursion	pattern.

• We	introduced	"general	recursion",	a	new	
class	of	templates	that	give	the	writer	more	
flexibility	in	writing	functions	that	divide	and	
conquer.

• We	wrote	a	recipe	for	writing	general-
recursion	templates.

34

Next	Steps

• Study	the	files	08-1-decode.rkt	and	08-2-
merge-sort.rkt	in	the	Examples	folder.

• Do	Guided	Practice	8.1
• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

35

